Tight closure in F-rational rings

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tight Closure in Graded Rings

This paper facilitates the computation of tight closure by giving giving upper and lower bounds on the degrees of elements that need to be checked for inclusion in the tight closure of certain homogeneous ideals in a graded ring. Differential operators are introduced to the study of tight closure, and used to prove that the degree of any element in the tight closure of a homogeneous ideal (but ...

متن کامل

Tight Closure in Non–equidimensional Rings

Throughout our discussion, all rings are commutative, Noetherian and have an identity element. The notion of the tight closure of an ideal was developed by M. Hochster and C. Huneke in [HH1] and has yielded many elegant and powerful results in commutative algebra. The theory leads to the notion of F–rational rings, defined by R. Fedder and K.-i. Watanabe as rings in which parameter ideals are t...

متن کامل

F-rational Rings Have Rational Singularities

It is proved that an excellent local ring of prime characteristic in which a single ideal generated by any system of parameters is tightly closed must be pseu-dorational. A key point in the proof is a characterization of F-rational local rings as those Cohen-Macaulay local rings (R; m) in which the local cohomology module H d m (R) (where d is the dimension of R) have no submodules stable under...

متن کامل

Tight Closure of Finite Length Modules in Graded Rings

In this article, we look at how the equivalence of tight closure and plus closure (or Frobenius closure) in the homogeneous m-coprimary case implies the same closure equivalence in the non-homogeneous m-coprimary case in standard graded rings. Although our result does not depend upon dimension, the primary application is based on results known in dimension 2 due to the recent work of H. Brenner...

متن کامل

Closure rings

We consider rings equipped with a closure operation defined in terms of a collection of commuting idempotents, generalising the idea of a topological closure operation defined on a ring of sets. We establish the basic properties of such rings, consider examples and construction methods, and then concentrate on rings which have a closure operation defined in terms of their lattice of central ide...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nagoya Mathematical Journal

سال: 1994

ISSN: 0027-7630,2152-6842

DOI: 10.1017/s0027763000004943